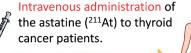
Drugs ~Cancer~


Targeted alpha-ray therapy for refractory thyroid cancer

Principal Investigator Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University

Assistant Professor Tadashi WATABE

Project Outline

Cancer treatment using alpha rays has garnered attention, with excellent therapeutic effects reported in the treatment of advanced cancers. In the treatment of differentiated thyroid cancer, beta-ray therapy involving radioactive iodine (¹³¹I) is commonly employed, but the therapeutic effect may prove insufficient. In addition, it needs isolated hospitalization in dedicated rooms due to regulation. Conversely, alpha rays emit a substantial amount of energy within a short range and have minimal radiation impact on their surroundings, making them suitable for outpatient treatment. Astatine (²¹¹At) is an alpha-emitting nuclide that exhibits properties similar to iodine and accumulates in thyroid cancer cells. In preclinical studies, we have confirmed the efficacy and safety of [²¹¹At]NaAt and have successfully established stable production as an investigational drug at Osaka University Hospital. We are conducting an investigator-initiated clinical trial using the alpha-ray nuclide astatine (²¹¹At), with the goal of practical application as a therapeutic drug that places less burden on both patients and medical institutions

²¹¹At accumulates in the metastatic lesions via Nalsymporter and emits alpha rays. Alpha rays emission DNA double strand break Cancer cell death Alpha rays emitted from ²¹¹At induce cancer cell death. • A large therapeutic effect can be expected.

• Outpatient treatment is possible with less burden.

Patent information

(1) Japanese Patent Application No. 2017-255109 (PCT / JP2018 / 048442)

Astatine solution and method for producing the same. Filing date: Dec 29, 2017 (PCT filing date: Dec 28, 2018)

(2) Japanese Patent Application No. 2017-235141 (PCT / JP2018 / 045068)

Method for producing astatine

Filing date: Dec 09, 2017 (PCT filing date: Dec 07, 2018)

(3) Japanese Patent Application No. 2018-048560 (PCT / JP2019 / 008043)

Radionuclide production system, radionuclide production program, radionuclide production method, and terminal device Filing date: Mar 15, 2018 (PCT filing date: Mar 14, 2019)

Comparison with existing drugs

	¹³¹ I (Iodine)	²¹¹ At (Astatine)
Types of radiation	Beta ray	Alpha ray
Biological effect ratio	1	5
Therapeutic effect	Mild to moderate	High
Range	Short	Extremely short
Gamma ray emission	Large	Small
Dosage (MBq)	Large	Small
Half-life	About 8 days	7.2 hours
Side effects	Mild	Mild
Hospitalization in a dedicated room	Necessary	No
Outpatient treatment	×	0
Domestic self- sufficiency	×	0

Investigator-initiated clinical trial (Alpha-T1 trial: Phase I) (November 2021 to March 2025)

Target: Patients with differentiated thyroid cancer who cannot obtain therapeutic effect with standard treatment or who have difficulty in implementing and continuing standard treatment (planned number of cases: maximum 32 cases) Objective: A single intravenous dose of [²¹¹At]NaAt will be administered to evaluate safety, pharmacokinetics, absorbed dose, and efficacy to determine recommended doses after the Phase II study.